Ergebnis der Suche (9)

Ergebnis der Suche nach: (Freitext: BRUCHRECHNUNG) und (Quelle: "Bildungsmediathek NRW")

Es wurden 183 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 3 4 5 6 7 8 9 10 11 12 13 14 Eine Seite vor Zur letzten Seite

Treffer:
81 bis 90
  • Kopfrechnen: einen Bruch in einen Mischbruch umwandeln und umgekehrt, Beispiel 3 | B.08.08

    Ein reiner Bruch ist ein Bruch, der nur einen Zähler und einen Nenner hat. Ein Mischbruch hat einen Zähler, einen Nenner und eine ganze Zahl davor stehen. Z.B. sind fünf Achtel ein Reinbruch, während zwei Ganze fünf Achtel ein Mischbruch ist. Um einen reinen Bruch in einen Mischbruch umzuwandeln, teilt man einfach den Zähler (=oben) durch den Nenner (=unten) und erhält ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009962" }

  • Kopfrechnen: einen Bruch in eine Dezimalzahl umwandeln und umgekehrt | B.08.09

    Bei einer Bruchrechnung muss man oft den Bruch in eine Dezimalzahl umwandeln oder eine Dezimalzahl in einen Bruch. Einen Bruch in eine Dezimalzahl umzuwandeln ist schnell erklärt: man teilt den Zähler (=Oberes) durch den Nenner (=Unteres). Fertig. Will man eine Dezimalzahl in einen Bruch umwandeln, gibt es mehrere Fälle: Fall a) Die Nachkommastellen brechen irgendwann mal ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009966" }

  • Kopfrechnen: einen Bruch in eine Dezimalzahl umwandeln und umgekehrt, Beispiel 5 | B.08.09

    Bei einer Bruchrechnung muss man oft den Bruch in eine Dezimalzahl umwandeln oder eine Dezimalzahl in einen Bruch. Einen Bruch in eine Dezimalzahl umzuwandeln ist schnell erklärt: man teilt den Zähler (=Oberes) durch den Nenner (=Unteres). Fertig. Will man eine Dezimalzahl in einen Bruch umwandeln, gibt es mehrere Fälle: Fall a) Die Nachkommastellen brechen irgendwann mal ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009971" }

  • Kopfrechnen: einen Bruch in einen Mischbruch umwandeln und umgekehrt | B.08.08

    Ein reiner Bruch ist ein Bruch, der nur einen Zähler und einen Nenner hat. Ein Mischbruch hat einen Zähler, einen Nenner und eine ganze Zahl davor stehen. Z.B. sind fünf Achtel ein Reinbruch, während zwei Ganze fünf Achtel ein Mischbruch ist. Um einen reinen Bruch in einen Mischbruch umzuwandeln, teilt man einfach den Zähler (=oben) durch den Nenner (=unten) und erhält ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009959" }

  • Kopfrechnen: einen Bruch in einen Mischbruch umwandeln und umgekehrt, Beispiel 5 | B.08.08

    Ein reiner Bruch ist ein Bruch, der nur einen Zähler und einen Nenner hat. Ein Mischbruch hat einen Zähler, einen Nenner und eine ganze Zahl davor stehen. Z.B. sind fünf Achtel ein Reinbruch, während zwei Ganze fünf Achtel ein Mischbruch ist. Um einen reinen Bruch in einen Mischbruch umzuwandeln, teilt man einfach den Zähler (=oben) durch den Nenner (=unten) und erhält ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009964" }

  • Kopfrechnen: einen Bruch in eine Dezimalzahl umwandeln und umgekehrt, Beispiel 2 | B.08.09

    Bei einer Bruchrechnung muss man oft den Bruch in eine Dezimalzahl umwandeln oder eine Dezimalzahl in einen Bruch. Einen Bruch in eine Dezimalzahl umzuwandeln ist schnell erklärt: man teilt den Zähler (=Oberes) durch den Nenner (=Unteres). Fertig. Will man eine Dezimalzahl in einen Bruch umwandeln, gibt es mehrere Fälle: Fall a) Die Nachkommastellen brechen irgendwann mal ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009968" }

  • Brüche addieren, Brüche subtrahieren, Beispiel 1 | B.02.03

    Will man Brüche addieren oder Brüche subtrahieren (Plus- oder Minusrechnung), braucht man den Hauptnenner. D.h. man muss jeden einzelnen Bruch derart erweitern, dass alle Brüche den gleichen Nenner haben (der Nenner ist das Untere). Ist das geschehen, wird’s einfach: der Nenner vom Ergebnis ist einfach der Hauptnenner, den Zähler vom Ergebnis erhält man, indem man alle ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009823" }

  • Wurzelfunktion: Asymptote und Grenzwert berechnen, Beispiel 2 | A.45.06

    Wurzelfunktionen haben an und für sich keine Asymptoten. Wenn Wurzelfunktionen jedoch Brüche oder sonstige komplizierte Zusätze haben, geht das jedoch. Man geht also folgendermaßen vor: Man bestimmt zuerst die Definitionsmenge. Nun lässt man x einmal gegen die linke Grenze der Definitionsmenge laufen, danach gegen die rechte Grenze. Je nach dem, was da raus kommt, hat man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009604" }

  • Mit L'Hospital Grenzwerte bestimmen, Beispiel 7 | A.52.02

    L'Hospital wendet man an, wenn man für eine Grenzwertberechnung einen Bruch erhält in welchem sowohl Zähler als auch Nenner beide gegen Unendlich oder beide gegen Null gehen. Vorgehensweise: Man leitet Zähler und Nenner jeweils getrennt ab und betrachtet den neuen Bruch (ggf. nochmals die L'Hospitalsche Regel anwenden).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009685" }

  • Gebrochen-rationale Funktionen: Asymptote und Grenzwert berechnen, Beispiel 4 | A.43.06

    Jede Funktion kann eine (oder mehrere) waagerechte Asymptote, senkrechte Asymptote und schiefe Asymptote haben. Am einfachsten berechnet man senkrechte Asymptoten (auch Polstellen oder Definitionslücken oder Lücken oder Polgerade genannt) in dem man den Nenner Null setzt. Waagerechte Asymptoten erhält man, in dem man x gegen Unendlich laufen lässt. Im Detail bedeutet, dass ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009520" }

Seite:
Zur ersten Seite Eine Seite zurück 3 4 5 6 7 8 9 10 11 12 13 14 Eine Seite vor Zur letzten Seite