Ergebnis der Suche

Ergebnis der Suche nach: ( (Systematikpfad: SCHULE) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER") ) und (Systematikpfad: MATHEMATIK)

Es wurden 4898 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Abstand windschiefer Geraden berechnen über Lotfußpunkt | V.03.10

    Für windschiefe Geraden, gibt es zwei Möglichkeiten der Abstandsberechnung. (Der einfachste Weg geht wohl über die Formel, dieser Wege liefert allerdings die Lotfußpunkte nicht.) Beide windschiefe Geraden schreibt man in Punktform um, (man bestimmt also einen laufenden Punkt für beide Geraden), zieht diese Lotfußpunkte voneinander ab, um den Verbindungsvektor zu erhalten ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010457" }

  • Substitution von Termen in Gleichungen, Beispiel 12 | A.12.06

    Substituieren heißt ersetzen. Substitution wendet man an, wenn man zwei Terme sowie eine Zahl hat, wobei die Hochzahl des einen Terms doppelt so hoch wie die Hochzahl des anderen Terms ist. Nun substituiert (ersetzt) man einen Term durch „u“, den anderen durch „u²“ und erhält eine Mitternachtsformel, aus welcher man u1 und u2 berechnet. Danach muss man resubstituieren, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008732" }

  • Tangente außerhalb, Beispiel 6 | A.15.04

    Tangente von außen oder Tangente von außerhalb liegt vor, wenn der Berührpunkt der Tangente (oder Normale) NICHT gegeben ist. Dafür kennt man einen anderen Punkt, der auf der Tangente liegt. Vorgehensweise: man verwendet die Tangentenformel, setzt die Koordinaten dieses anderen Punktes für x und y ein und erhält nun eine Gleichung mit nur noch einer einzigen Unbekannten ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008891" }

  • Entfernung berechnen | A.01.04

    Entfernungen von zwei Punkten bestimmt man entweder über die Entfernungsformel berechnen: Abstand = Wurzel aus ((x2–x1)^2+(y2–y1 )^2) oder man zeichnet ein Steigungsdreieck ein und kann dann über Pythagoras die gewünschte Streckenlänge berechnen. Liegen die beiden Punkte nebeneinander oder übereinander, kann man Entfernung der beiden Punkte auch ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008319" }

  • Simplex-Algorithmus | M.08.02

    Tauchen in der Linearen Optimierung mehr als drei Unbekannte auf, so ist das Problem nur noch rechnerisch lösbar. Dazu braucht man einen Algorithmus (d.h. eine längere Abfolge von Regeln) den man unbedingt lernen muss (geht nicht intuitiv). Dieser Algorithmus heißt „Simplex-Algorithmus“. Wie geht man im Detail vor? Zuerst erstellt man die Ungleichungen aus der gegebenen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010258" }

  • Schnittpunkt zweier Ebenen berechnen, Beispiel 2 | V.02.03

    Zwei Ebenen können auf drei Arten zueinander liegen: Sie können parallel sein, identisch sein oder sie haben eine Schnittgerade. Wenn die Ebenen in Koordinatenform gegeben sind, erkennt man die drei Lagen sehr schnell. Wenn die linken Seiten der Koordinatengleichungen Vielfache voneinander sind, sind die Ebenen parallel oder identisch. Falls nicht, haben sie eine ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010417" }

  • Finanzmathematik: kurze Einführung | A.55

    Die Finanzmathematik befasst sich natürlich mit der Berechnung von verschiedenen finanzmathematischen Problemen. In diesem Kapitel betrachten wir: 1.Zinseszins-Berechnungen, 2.Rentenrechnung (Ratensparen), 3.Annuitäten-Rechnung (Tilgungsrechnung), 4.Bar- und Endwerte (mit Begriffen wie vor- und nachschüssig)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009767" }

  • Umkehrfunktion berechnen, Beispiel 8 | A.28.01

    Die Umkehrfunktion einer Funktion zu bestimmen, ist vom Prinzip her sehr einfach: Man löst die Funktion nach „x“ auf. Hat man das getan, kann man das bisherige „x“ nun „y“ nennen, das bisherige „y“ nennt man „x“ und ist fertig (=Variablentausch). Hier ein paar gängige Beispiele dazu. Streng genommen kann man nur dann eine Funktion umkehren, wenn die Funktionen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009238" }

  • Quadratische Ergänzung zur Lösung quadratischer Gleichungen, Beispiel 1 | G.04.06

    Abgesehen von der a-b-c-Formel oder p-q-Formel kann man quadratische Gleichungen auch über „quadratische Ergänzung“ lösen. Die meisten Leute finden die quadratische Ergänzung eher „unschön“, jedoch handelt es sich immer um den gleichen Lösungsweg (auch wenn er etwas länger dauert). Mathematisch gesehen ist die quadratische Ergänzung der eigentliche Lösungsweg von ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010091" }

  • Quadratische Ungleichungen, Beispiel 4 | A.26.02

    Eine quadratische Ungleichung ist natürlich eine Ungleichung, in welcher „x²“ vorkommt. Es gibt zwei gute Vorgehensweisen dafür. Entweder über die quadratische Ergänzung oder man bestimmt die Nullstellen der quadratischen Parabel, überlegt, wie die Parabel liegt und weiß damit, in welchem Bereich die Parabel positiv oder negativ ist.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009184" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite